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1. Introduction

Inverse molecular design (IMD) beyond the purview of drug design has enjoyed
increasing popularity recently. Examples can be found in protein design'™ or
high-hyperpolarizability materials.>~’ The design problem is complicated by the
vastness of possible chemicals, termed chemical space. This space can be viewed
as combinatorially complex (e.g., 20% ~ 2.6 - 101° octapeptides of the naturally
occurring amino acids exist alone). As a consequence, a variety of methods have
been developed for the discrete optimization in chemical subspaces.®!> The
continuous optimization of chemicals used in the linear-combination-of-atomic-
potentials (LCAP) method!®!” and the variation-of-particles density-functional-
theoretical (VP-DFT) method introduces an important concept for dealing with the
inherent roughness of chemical compound space.!®2° LCAP and VP-DFT
interpolate continuously between the Hamiltonians of various chemical species.
Furthermore, an investigation into the reasons why chemical optimization is,
relatively speaking, “easy” recently utilized probability distributions and
expectations on the control variables to arrive at its conclusion.?'*? Follow-up
work discovered that indeed all properties can be optimized efficiently using only
the charge density with as-yet unknown functionals.?* All previous optimizations
were executed using at most single constraints. In this contribution, we introduce a
flexible method for multiple nonlinear (inequality) constraints applied to a

combinatorially complex search space of energetic materials.

In recent years, organic molecules have garnered increasing attention as
components of high-hyperpolarizability materials, partly due to the variety of
synthetically accessible compounds, cost, and ease of processing.?** Applications
for materials with high hyperpolarizabilities are found in telecommunication and
optics.?® The dominant nonlinear response of organic molecules often finds its
origin in the conjugated m-system, which facilitates the electronic polarizability.
This lends itself to advanced electronic and photonic applications including optical
information processing, photovoltaic cells, photodynamic therapy agents, and
many others.?6~?® The design of such molecules in silico is complicated by the fact
that chemical space, even constrained to smaller organic compounds, is
combinatorially complex. The number of organic molecules of medium size is
estimated to be on the order of 10%%°.?° Enumeration is therefore unfeasibly costly
and other methods for property optimization need to be developed. Including

conformational searching further complicates molecular design.



The optical spectra and nonlinear optical (NLO) properties of chromophores may

be conveniently manipulated by modifying the molecular architecture,

substitutional groups, or substitution patterns.?63°-32 The hyperpolarizability tensor
are the third derivatives of the energy with respect to the electric field,?*-*
PE
= e I

Commonly only the averaged vector components of the vector,
Bi = 5 22, Bijj + Bjij + Bjji are used. In particular the component in the direction
of the dipole moment, 3, = H—;H > i .- Bitti> and the vector norm,

B =>._, e 2. play an important role in electro-optic activity.

Several equivalent methods predict electro-optic trends correctly,?’ despite the
abundance of methods and conventions for determining hyperpolarizabilities
experimentally.?53 The sum-over-states expression of the tensor components in

the limit of infinite wavelength,

= 3 Q) via0) o
120 0o

where L is the excitation energy from the ground state to excited state o, links
the linear absorption spectrum to the hyperpolarizability.*® From Eq. 2, low
excitation energies coupled with large ground-to-excited-state
transition-dipole-moments lead to large hyperpolarizabilities (i.e., a material
which absorbs everywhere exhibits maximal hyperpolarizability). But such a
material would not be able to transmit anything. Hence, it is necessary to navigate
the trade-off between hyperpolarizability and optical constraints by tuning the
excited-to-excited-state transition-dipole-moments while maintaining transparency

or absorption at the target wavelength(s).

Therefore, the main challenge to designing efficient, electro-optic (EO) materials
lies in retaining good linear optical properties. For instance, transparent
chromophores in a visible yellow spectral range are typically small molecules with
low EO response, while molecules possessing large hyperpolarizabilities are
frequently opaque or, at best, have small windows of visibility. The visibility
window in these NLO frameworks is generally bracketed by 2 kinds of electronic

transitions.?®3%3! The blue transition is a local excitation of 7—7* character, while



the red transition is characterized by a significant intramolecular charge-transfer.
The charge-transfer peak is typically the maximum absorption peak (\,,q,) While
the 7-7* transition has a lower oscillator strength and is often denoted as A4z —1-
Optimal chromophores, which are transparent in the visible spectrum, would have
ared \,,..-peak, while the \,,,._1-peak should lie in the blue or UV spectral
region to open a large visibility window. In the case of telecommunications
applications, it is important to achieve transparency in the 1.30-1.55 pm minimum
range.?’ Therefore, the design principle for such chromophores calls for the
Amaz-peak to be significantly blue-shifted. In this report, we investigate the effects
due to the electronic properties of the m-system of the bridge between donor and

acceptor.

Computational tools are increasingly playing a role in assisting experimental
design of optimal chromophores by curtailing the vast optimization space of
chromophore structures.!*?”3¥43 Density-functional theory currently offers the
best compromise between accuracy and computational performance for typical
chromophores of about 100 atoms. The electronic spectra are often calculated
=

using time-dependent density-functional theory (TD-DFT)™ and numerous

successes of this technique have been recently reviewed.®
2. Optimization Methodology

Our optimization problem is formulated as a constrained maximization,

2857 @
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where 7 () is the penalty due to the absorbance of compound x from the chosen
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subspace (CCS) of chemical compound space discussed later in the range
400-700 nm, eﬁf") and fi(x) are the excitation wavelength and the normalized
oscillator strength of state ¢ for compound x, respectively, o = 72 is an
approximate broadening coefficient, and P(z) is the hyperpolarizability (5. The
constraint value of 30 is equivalent to an average absorption of 0.1 in the 400- to
700-nm range. We reformulate Problem 3 via a non-negative Lagrange multiplier

0 < A € R for the constraint in the augmented Lagrangian function



L(z,\) = P(x) — Ar(x) to

8 RE P) — An(e) @
The Problem 4 is then solved alternatingly between the primal variable(s)  and

the dual viariables \.

We begin by describing the optimization procedure within CCS. The chemical
subspace that we investigate is depicted in Fig. 1. Each of the 8 Xs on 1 represents

a substitution site for which one of 4 chemical groups is attached.

Fig. 1 Optimization framework: Each X may be replaced by -H, -F, -Cl, or -Br for a total of
216 possible molecules.

The overall search space thus encompasses 2'6 molecules. Each such substitution
site represents an independent search direction.'* There is a natural enumeration
that follows from the input (see Listing 4 in the Appendix), where the compound

{z; = X} is assigned the number n(x) = 3, [[/_, N;X;, where Nj is the

number of options on substitution site 7 and Ny = 1.

The substitutions are enumerated and thus can be viewed as the integer positions
on a circle. The optimization proceeds with a local line search for each substitution
site in the prescribed order of sites. When neighboring substitutions in the current
direction to the current iterate are inferior, the line search is halted and the next

direction is searched.

After all search directions have been searched, the minimization with respect to A
is performed using the dual function Py (\) = max,ccos L£(x, A) via its
approximation

where C'C'S’ is the subset of visited (i.e., already computed) molecules. Due to the

discrete nature of CC'S’, (’ 4 1s a piece-wise linear function of A with general

4



derivative —m(x(\)) , where z(\) := arg maxyeccs' £(y, A). Due to the
piece-wise linearity, A only changes meaningfully when x () # x()’). Thus,
whenever 7(x) # 0, A is updated cumulatively by

AN = ar(z*) max {inf {\" € R |L(z,\" + X) > L(z",\" + \)},0}, (6)

where a > 1, CC'SY’ is the set of molecules that have already been computed, x* is

the currently active molecule, and \* is the currently active Lagrange multiplier.

By choosing the update along the constraint violation direction 7(z*), the update
of )\ is a steepest descent update with a conservative step size. The step size is
chosen such that either x* violates constraints the least as well as maximizing P or
that there exists ' € C'C'S” with an improved L(2/, A + AX) > L(z*, A + AN).
The optimization then returns to optimizing over CCS as described before until no
improvement can be attained or the maximum number of steps is exceeded. The

general program flow is visualized in Fig. 2.

Since generally there is no a priori knowledge of the proper search order of each
substituent, the initial assignment is expected to be generally unsuited for smooth
optimization. To mitigate this problem, the enumeration of substituents is
reassessed after each full cycle of local searches in each direction. For each

substituent the average arc tangent of the Lagrangian value is computed,

> arctan £(z,\)

R zeCCS'|x;=j ! . L — 4
fz(]) _ FreCOTTr=i] dr e CCS" 1 x; = : (7)
o’ otherwise

79

where ozf is a default policy for unseen substituents (discussed on the next page),
which is subsequently used to order the substituents around the circle starting with
the lowest scoring substituent and placing substituents alternatingly to the left and
right in ascending order. The resulting order produces a smooth ordering which is
monotonically increasing until the maximum is reached, and then monotonically
decreasing until the minimum is reached, or vice versa depending on which part of
the circle one starts and which direction one goes. The arc tangent is used because
some computations may fail due to convergence issues in geometries or general

instability of the molecule, which are mapped to a Lagrangian value of —oc.

We investigate 4 different strategies for assigning values to unseen substituents.
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Fig. 2 Flowchart of algorithm

Algorithm 1: Complete a full sweep of all substituents on the first iteration.

After the initial scan there are no unseen substituents anymore.

Algorithm 2: Assign the unseen substituent the same value as the current
iterate; this guarantees that the unseen substituents are immediate neighbors
of the current iterate and that at least one will be seen in the next

optimization step.

Algorithm 3: Assign the unseen substituent the value 0. This is easily

implemented but may have random results.

Algorithm 4: Assign the unseen substituents the maximum value. This
implies a bias toward unseen substituents to be better in general. As the

optimization proceeds this converges with the second method.



No reordering is denoted as Algorithm 0. Four further algorithms are compared:

e Algorithm 5: Conduct a full line search in each direction. No reordering is
necessary, but presumably far more compounds need to be computed for

each direction.

e Algorithm 6: Reordering occurs as per Algorithm 3, but unlike in Eq. 6, A is
chosen such that L(\, z*) < L(\, 2'), where 2’ € argmingcccs m(y).

Hence, Algorithm 6 solves the subproblem

P
2 T <8>

s.t.:m(x) < 30.

e Algorithm 7: Following the protocol of optimizing on a hypercube.!*

e Algorithm 8: Same as Algorithm 7, but with deleting compounds x with
7(x) > m(x*) from the library, effectively reordering the library, where z* is

the current iterate.

Since the latter 2 methods are unaware of the underlying structure of the search

space, they may be expected to perform erratically.

3. Computational Chemistry Protocol

All geometries were optimized with PM6 using Gaussian 09*° as described
elsewhere? (see Listing 1 in the Appendix for specifics). Hyperpolarizabilities (3,
were computed at the CNDO level of theory.!* Spectra were computed at the
BH&HLYP/6-31+G(d) level in the time-dependent density-functional

k48,49

framewor using Gaussian 09.%

Before further analysis, the conformational space was explored to ensure only
low-energy species were considered.*’ Listing 2 in the Appendix summarizes

these steps.



Fig. 3 Best candidate found

4. Results and Discussion

Despite expectations Algorithm 5 does not always perform better at reducing the
violation than the other algorithms (see start number 41668 in Table 1). As
expected, the Algorithm 7 variants tend to perform worse than the Algorithm 5
variants. Surprisingly, the Algorithm 8 actually performs worse on average than
Algorithm 7. Algorithm 6 uses the fewest iterations on average per individual run.
The largest number of computed compounds in a single run was 138, which
constitutes merely 0.02% of the library. Despite minimizing 7, Algorithm 6 results
in the lowest penalty violation once (see start number 41668 in Table 1). Except
for start number 8389, Algorithm O is inferior with respect to fulfilling constraints
to all other methods but Algorithm 8, which fails to outperform Algorithm O for

start number O only.

Table 1 Comparison of the performance of the assorted reordering schemes on multiple start-

ing compounds

Method Start  # Molecules Property  Penalty Efficiency
Algorithm 5 0 119 121.31 15.5295  0.000541122
Algorithm 0 85 133.88 23.2389  0.000506251
Algorithm 1 81 124.352  21.5181  0.000573735
Algorithm 2 74 133.88 23.2389  0.000581504
Algorithm 3 74 124352 21.5181  0.000628007
Algorithm 4 93 126.962  18.8063 0.00057176
Algorithm 6 49 124352  21.5181  0.000948418
Algorithm 7 64 132.119 23.5097  0.000664619
Algorithm 8 80 130.764  27.0287  0.000462471
Algorithm 5 4710 114 121.31 15.5295  0.000564856



Table 1 Comparison of the performance of the assorted reordering schemes on multiple start-
ing compounds (continued)

Method Start  # Molecules Property  Penalty Efficiency
Algorithm 0 45 164923  38.6927  0.000574326
Algorithm 1 84 139494 21.5761  0.000551757
Algorithm 2 91 121.31 15.5295  0.000707622
Algorithm 3 93 121.31 15.5295  0.000692404
Algorithm 4 93 121.31 15.5295  0.000692404
Algorithm 6 76 125.011  17.7595  0.000740893
Algorithm 7 55 125.011  17.7595 0.00102378
Algorithm 8 48 163.287  35.6982  0.000583596
Algorithm 5 8389 120 105.054 3.5658  0.002337016
Algorithm 0 111 105.054 3.5658  0.002526504
Algorithm 1 118 105.054 3.5658  0.002376627
Algorithm 2 139 105.339 8.68666 0.000828195
Algorithm 3 139 105.333 8.68666 0.000828195
Algorithm 4 128 125.799  18.8994  0.000413373
Algorithm 6 63 93.8483  5.66247 0.002803196
Algorithm 7 64 104.418 8.92695 0.001750318
Algorithm 8 81 105.333 8.68666 0.001421223
Algorithm 5 41329 142 105.054 3.5658  0.001974943
Algorithm 0 75 164.923  38.6927  0.000344596
Algorithm 1 111 112876  11.5523  0.000779845
Algorithm 2 111 111.944 7.44892 0.001209438
Algorithm 3 112 105.054 3.5658  0.002503946
Algorithm 4 111 111.944 7.44892 0.001209438
Algorithm 6 85  96.982 5.35516 0.002196892
Algorithm 7 77 129505  23.4977  0.000552693
Algorithm 8 97 125.799  18.8994  0.000545482
Algorithm 5 41668 107 115973  12.729 0.000734213
Algorithm 0 88 132.798  22.3781  0.000507802
Algorithm 1 104 93.8483  5.66247  0.00169809
Algorithm 2 137 126962 18.8063  0.000388129
Algorithm 3 87 115973  12.729 0.000902997
Algorithm 4 138 126962 18.8063 0.000385316



Table 1 Comparison of the performance of the assorted reordering schemes on multiple start-
ing compounds (continued)

Method Start  # Molecules Property  Penalty Efficiency
Algorithm 6 101 105.054 3.5658  0.002776653
Algorithm 7 87 118.986  13.5325  0.000849381
Algorithm 8 112 105.333 8.68666 0.001037109

Table 2 Ratio of objective to constraint, rounded to uniquely identifying ratios

Method 0 4710 8389 41329 41668
Algorithm 5 7.81 7.81 2946 2946  9.11
Algorithm 0 5.76 426 29.46 426 593
Algorithm 1 578 647 2946  9.77 16.57
Algorithm 2 5.76 7.81 12.13 15.03 6.75
Algorithm 3 5.78 7.81 12.13 2946  9.11
Algorithm4 6.75 7.81 6.66 15.03 6.75
Algorithm 6 5.78 7.04 16.57 18.11 29.46
Algorithm 7 5.62 7.04 11.66  5.51 8.79
Algorithm 8 4.84 4.57 12.13 6.66 12.13

Table 3 Comparison of average performance

Method Total # Molecules Total Efficiency Average Efficiency
Algorithm 5 602 0.00046585 0.00123043
Algorithm 0 404 0.000694163 0.000891896
Algorithm 1 498 0.000563136 0.001196011
Algorithm 2 552 0.000243202 0.000742978
Algorithm 3 505 0.000555331 0.00111111
Algorithm 4 563 0.000238451 0.000654458
Algorithm 6 374 0.000749845 0.00189321
Algorithm 7 347 0.000322825 0.000968158
Algorithm 8 418 0.000275404 0.000809976

10



5. Conclusions

We have developed and compared efficient algorithms for handling constraints in
the optimization of substitutional subspaces of chemical compound space. The
best candidate was found to be 2 (see Fig. 3). Algorithm 6 shows the most promise
for finding good candidates with minimal effort both for single runs as well as
aggregate samples. Reordering substitutions improves expected performance for
single runs as both Algorithm 1 and Algorithm 3 are very competitive with
Algorithm 6. Since Algorithm 6 differs from Algorithm 3 merely in solving the
subproblem, there is no additional computational cost associated. Algorithm 4
shows the worst performance both in aggregate as on average due to relegating

entire subspaces maximally far from the current iterate.

The Algorithm 7 family of algorithms performs surprisingly well on average, even
though it does not utilize the underlying structure of the search space. On the other

hand, aggregate efficiency is poor for the Algorithm 7 family.

Since Algorithm 7 consistently computes the fewest compounds before
converging, it can be recommended when only a quick assessment is required. In

all other cases, Algorithm 6 should be considered superior.

11
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Listing 1 energy_run.sh runs the constrained geometry preoptimization and the follow-up full
optimization. It returns the final coordinates.

#!/bin/bash

# Execution script

# remove extra files
EXEC=$PWD/ g09 _run
filename=‘basename ${1} .dat°
mkdir —p $1

if [ ! —e "$1/energy"” —a ! —e "$1/failed" ]; then
cd $1
echo %chk=opt.chk > pre.com
cat ../ header.com >> pre.com
cat ../$1.zmat >> pre.com
echo %chk=opt.chk > opt.com
cat ../ footer.com >> opt.com
if [ ! —e "pre.log" ]; then
NORMALEXEC=‘tail pre.log | grep —o termination °
if [ ! —z "$NORMALEXEC" —o ! —e "opt.chk" ]; then
$EXEC pre.com pre.log
fi
fi
$EXEC opt.com opt.g09_out
NORMALEXEC="tail opt.g09_out | grep —o Normall awk ’{print)\
$1}°¢
if [ "$NORMALEXEC" == "Normal" ]; then
fgrep opt.g09_out —e ’SCF Done’ | tail —1 | awk ’{print)\
$5}° > energy
awk —f ../ logcart.awk < opt.g09_out > xyz
python ~/bin/retrieve_zmat_from_xyz.py ../$1.zmat xyz \
| grep c¢c > opt.rconsts
python ~/bin/retrieve_zmat_from_xyz.py ../$1.zmat xyz \
| grep d > opt.rvars
../ retrieve_zmat_g03 opt.g09_out opt

This appendix appears in its original form, without editorial changes.
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bzip2 opt.g09_out
bzip2 =x.chk

In —s $1/energy $1.energy
In —s $1/opt.rvars $1.rvars
In —s $1/opt.rconsts $1.rconsts
else
echo —1000000 > result
touch failed
exit 1
fi
fi

Listing 2 proprty_script.sh computes the properties and penalties of a molecule.

#!/bin/bash
Execution script

geometry optimize in Gaussian and feed to CNDO

#

#

# run cndo
# read strongest excitation

# read beta

# remove extra files

EXEC=/apps/ gaussian/scripts/g09] _run_dO1
filename="‘basename ${1} .dat°*

mkdir —p $1

if [ ! —e "S$1/$1.failed" —a —e "$1/$1.xyz" ]; then

cd $1
# Compute Hyperpolarizability
if [ ! —e "$1.result" ]; then
# CNDO

../ xyz_to_CNDO $1.xyz $1.dat 0 1
In —s ../ SOS_input. txt

In —s ../INDOIS. par

echo $1 | cndo >& cndo_out

SOSx

../ clean_cndo
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mv sosx $1.s0s

fgrep $1.sos —e ’beta mu’ | awk ’{print $3}° > $1.result
BLA=‘cat $1.result *

../ fabs $BLA > $1.result

bzip2 $1.log

cd ..

In —s $1/$1.result

cd $1

fi

if [ ! —e "$1.penalty" ]; then

bunzip2 $1.chk.bz2

# Compute penalty of spectrum

echo %chk=$1.chk > $1_spectrum.com
cat ../spectrum.com >> $1_spectrum.com
$EXEC $1_spectrum.com $1_spectrum.log 32
bzip2 $1.chk
STATEG09=‘fgrep $1_spectrum.log —e Normal | awk \
{print $1} ¢
if [ "$STATEG09" == "Normal" ]; then
fgrep $1_spectrum.log —e "Excited_State " | \
awk ’{print $7}° > $1.nm
fgrep $1_spectrum.log —e "Excited_State " | \
awk ’{print $9}° | awk —F = ’{print $2}° > $1.osc
../ integrate_window_penalty ${1}.nm $1.o0sc \
${1}.penalty
BLA=‘cat $1.penalty *
../ fabs $BLA > $1.penalty

rm $1.chk.bz2
bzip2 xlog
else
echo 100000 > $1.penalty
touch $1. failed
exit 1
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fi
cd ..
In —s $1/$1.penalty
exit 0
fi
fi

Listing 3 Script that sets up the right links for the optimization after a good initial structure
has been identified.

#!/bin/bash

n=%$1
echo $n
In —s $1 $2

for i in ‘Is ${n}.x | awk —F "${n}" *{print $2}°°; do
# echo $i
if [ ! —e "$28%i" ]; then
In —s $18i $28i
fi
done
n=§1
cd $1
for i in ‘Is ${n}xchkx | awk —F "$n" ’{print $2} ‘; do
cp $1%i $28i
done
for i in ‘1s ${n}*x.x | awk —F "$n" ’{print $2}°°; do
# echo $i
if [ ! —e "$2$i" ]; then
In —s $18i $28i
fi
done
cd

Listing 4 Input file to determine the substitutional search space.

ChemGroup ((
Z( # Framework
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.000000

455198

455202

.382367

.090564

.100788

.096133

.090564

.100785

.096133

418413

.387462

410705

410706

.387460

.060996

413713

.387454

.000000

.000000

.635000

.869000

.068000

488000

.145000

.068000

487000

.145000

.400000

.166000

.553000

.355000

.552000

.324000

.840000

,120.846000

,—1

9

’ _2’

,—3

,10

11

,10

11

,12

b

9

b

9

’

b

9

2

b

’

b

b

2

b

’

b

0.000000

0.000000

0.000000

165.442000

—177.996000

61.924000

—59.556000

178.005000

—61.916000

59.565000

172.824000

178.587000

0.387000

0.288000

—0.288000

—179.837000

0.091000

179.824000



(C

(C

(C

(C

(C

(C

(C

(C

(C

(N

O

(O

(H

(H

(H

(H

(C

(C

,17

,18

,15

,18

,21

,25

,10

,14

,12

,15

412401

412399

413711

.061134

413807

.388815

.396983

.396982

413807

467005

.233931

.233930

.082963

.082964

.082697

.082697

420584

420221

16

17

16

17

18

21

22

23

22

23

24

24

22

24

11

13

11

16

,120.

,118.

,118.

,120.

,120.

,120.

,118.

,121

,118.

,119.

,117.

,117.

,121

,1109.

,118

,118

,121

,120.

23

748000

500000

313000

750000

572000

703000

985000

.768000

856000

116000

856000

855000

410000

605000

420000

420000

.322000

843000

,15

,16

,17

,16

17

,18

,23

,12

,12

,10

.17

9

’

b

9

2

9

’

b

9

2

b

’

b

b

2

b

’

b

0.004000

0.022000

—0.030000

—179.910000

—0.003000

179.943000

0.002000

0.002000

—0.006000

—179.996000

0.008000

—179.992000

—179.995000

180.000000

—179.648000

179.647000

—179.945000

179.930000



(C ,18 , 1.421365 , 17 ,120.750000 ,16 ,—179.945000

)

(C ,21 , 1.420438 , 22 ,120.572000 ,23 , 179.981000
)
)

ReturnConnector ()
Connector (
(

(16,15,35)

(0.7, 0, 0)

(0,120,0)

(0,0,0)

( 0, 0, 1)

( 0, 0, 1)

( 0, 0, 0)

0

)

(
(20,15,35)
(0.7, 0,0)
(0,120,0)
(0,0,0)

( 0, 0, 1)

( 0, 0, 1)

( 0, 0, 0)
0

)

(
(13,12,11)
(0.7, 0,0)
(0,120,0)
(0,0,180)

( 0, 0, 1)

( 0, 0, 1)

( 0, 0, 0)
0
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)

(
(11,12,13)
(0.7, 0,0)
(0,120,0)
(0,0,180)

( 0, 0, 1)

( 0, 0, 1)

( 0, 0, 0)
0

)

(
(17,16,15)
(0.7, 0,0)
(0,120,0)
(0,0,180)

( 0, 0, 1)

( 0, 0, 1)

( 0, 0, 0)
0

)

(

(19,18,17)
(0.7, 0,0)
(0,120,0)
(0,0,180)

( 0, 0, 1)

( 0, 0, 1)

( 0, 0, 0)
0

)

(

(22,21,37)
(0.7, 0,0)
(0,120,0)
(0,0,0)
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(26,21,37)
(0.7, 0,0)
(0,120,0)
(0,0,0)

( 0, 0, 1)
( 0, 0, 1)
( 0, 0, 0)
0

)

)

allowed_groups (
(1,2,3,4) # Subs, H, F, CI, Br
(1,2,3,4)
(1,2,3.,4)
(1,2,3,4)
(1,2,3,4)
(1,2,3.,4)
(1,2,3,4)
(1,2,3,4)

(#1
Z(
(H, -3, 0.45, -2, 0, —1, 0)
)
ReturnConnector ()
Connector ()
allowed_groups ()
)
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(#2

Z(

(F, -3, 0.6, =2, 0, —1, 0)
)

ReturnConnector ()
Connector ()
allowed_groups ()
)
(#3

Z(

(c1, -3, 0.8, =2, 0, —1, 0)
)

ReturnConnector ()
Connector ()
allowed_groups ()
)
(#4

Z(

(Br, -3, 1.2, =2, 0, —1, 0)
)

ReturnConnector ()
Connector ()

allowed_groups ()

)

nconstraints (1)

Listing 5 integrate_window_penalty.cc Computes the penalty function for absorbing in the
visible electromagnetic range.

#include <fstream>

#include <iostream >

#include <sstream>

#include <string >

#include <cmath>

#define MAX STEP 20
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using namespace std;

double tolerance=le—14;

double num_int(double x, double y,double alpha)
{
double d=y—x;
double dx=d/100000.0;
double r=0.0;
for (long 1=0;i<100001;i++,x+=dx)
r+=dx*xexp(—(1.0—x)*(1.0 —x)/(xxx)*alphaxalpha);

return r;

double diff_int_Gaussian (double x,double y)
{
long i;
double z=1;
double r=0.0;
const double x2=xxXx;
const double x4=x2%xx2;
const double y2=yxy;
const double y4=y2xy2;
double x4i=x;
double y4i=y;
double r1=0.0;
double r2=0.0;

for (i=0;1<MAX_STEP && z>tolerance; i++)
{

z=1.0/(double) (4xi+1)*x(ydi—x4i)—
(y2*xy41i—x2xx4i)/(double) ((4xi1+3)*x(2x1+1));

rl+=1.0/(double) (4xi+1)x(x4i)—
(x2xx41)/(double) ((4*xi+3)*x(2xi+1));

r2+=1.0/(double) (4xi+1)x(y4i)—
(y2xy4i)/(double) ((4xi+3)x(2%xi+1));
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r+=z2;

xdix=x4/(double) ((2*i+1)*(2%i+2));

ydix=y4/(double) ((2xi+1)*(2xi+2));
}

return r2-rl;

int main(int argc, char xargv[])

{
if (argc <3)

"

cerr << "Usage: " << argv|[0]

<< " _<nmfile>_<oscfile > <NLO_optresultfile >\n";
ifstream log(argv([1]);
ifstream log2(argv([2]);

fstream result;

bool done=false;

string search;

int number;
double eV,cm_1,nm;
double strength;
double penalty=-30.0;
log >> nm;
log2 >> strength;
double alpha=sqrt(72.0);
while (log.good () && !done) {
penalty+=strength+«num_int(400.0/nm,700.0/nm, alpha)xnm;
log >> nm;
log2 >> strength;
}
if (penalty <0) penalty=0.0;
result.open(argv[3],i0s::1in);

getline (result ,search);
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result

.close ();

stringstream ss2;
double val=0.0;

ss?2 << search;

ss2 >> val;

val —=penalty ;

result
result
result

result

.open(argv[3],i0s

;sout);

<< fabs(val) << endl;

.flush ();

.close ();
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List of Symbols, Abbreviations, and Acronyms

CCS chemical compound space

EO electro-optic

LCAP linear combination of atomic potentials

NLO nonlinear optical

nm the official abbreviation for nanometer from the International System
of Units

TD-DFT time-dependent density-functional theory

VP-DFT variation-of-particles density-functional-theory
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